Giant photostriction in organic-inorganic lead halide perovskites.

نویسندگان

  • Yang Zhou
  • Lu You
  • Shiwei Wang
  • Zhiliang Ku
  • Hongjin Fan
  • Daniel Schmidt
  • Andrivo Rusydi
  • Lei Chang
  • Le Wang
  • Peng Ren
  • Liufang Chen
  • Guoliang Yuan
  • Lang Chen
  • Junling Wang
چکیده

Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies

Two-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural "multiple quantum wells" that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to "Rashba splitting" close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calcul...

متن کامل

Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites

The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key element...

متن کامل

Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3-x Cl x and CH3NH3PbI3 perovskite films ...

متن کامل

Photodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites

Recent years have witnessed skyrocketing research achievements in organic-inorganic hybrid lead halide perovskites (OIHPs) in the photovoltaic field. In addition to photovoltaics, more and more studies have focused on OIHPs-based photodetectors in the past two years, due to the remarkable optoelectronic properties of OIHPs. This article summarizes the latest progress in this research field. To ...

متن کامل

Hybrid Organic−Inorganic Perovskites on the Move Published as part of the Accounts of Chemical Research special issue “Lead Halide Perovskites for Solar Energy Conversion”

Published as part of the Accounts of Chemical Research special issue “Lead Halide Perovskites for Solar Energy Conversion”. David A. Egger,*,† Andrew M. Rappe,*,‡ and Leeor Kronik*,† †Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel ‡The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016